# Dealing with the haemato-oncology patient in intensive care

Dr Tim Wigmore FRCA, FJFICM
Consultant Intensivist, Royal Marsden Hospital

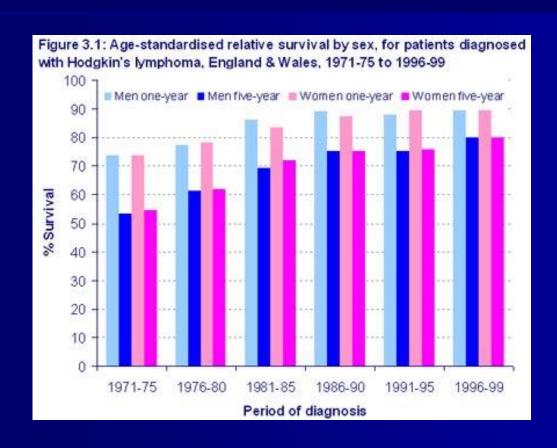
# The Royal Marsden



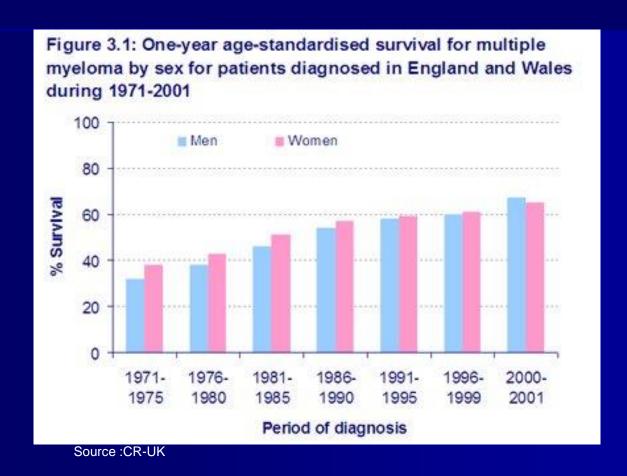
## Our old ICU....



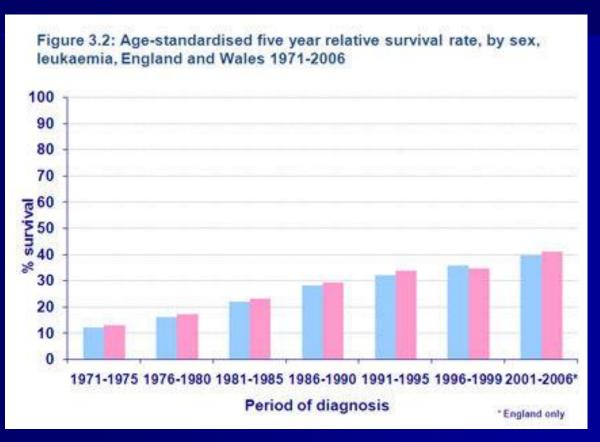
### ICM at the Marsden


- 11 Level 3 beds in Chelsea
- 2 HDU beds in Sutton
- 900 admissions per year
  - 70% elective/emergency surgical
  - 30% mix of various medical oncology
  - 5-6% Haemato-oncology

- Outcomes for Haemato-oncology patients
- Prognostic indicators
- General Admission strategy
- Bone Marrow Transplant patients
- Prognostic indicators
- Common problems with BMTs
- Admission strategy for BMTs

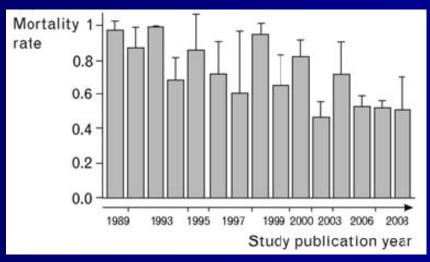

### **Improving outcomes**

- General trends for the haemato-oncology patient
- ICU Mortality


### **Relative survival from NHL**



### Relative survival from multiple myeloma




### **Relative survival from leukamia**



Source: CR-UK

# ICU Mortality — Bone Marrow Transplants



Azoulay 2009

# RMH ICU Haemato-oncology data 2005-2009

- 1 in 4 Haem-Onc Patients need ICU
- n=199
- 43% (n=87) post bone marrow transplant
- Apache 24.7 +/-7.6
- Mortality 38.2% (ICU)
   51.4% (Hospital)

# ICNARC data for Haem-Onc patients 1995-2007

|                                             | All admissions (n = 7,689) |
|---------------------------------------------|----------------------------|
| Age, mean (SD)                              | 57.5 (17.6)                |
| Male, n (%)                                 | 4,638 (60.3)               |
| APACHE II Acute Physiology Score, mean (SD) | 17.1 (7.4)                 |
| APACHE II score, mean (SD)                  | 24.4 (7.9)                 |
| ICNARC physiology score, mean (SD)          | 23.7 (11.4)                |
| Number of organ system failures, mean (SD)  | 1.5 (1.2)                  |

| Mortality, n (%)      |              |
|-----------------------|--------------|
| Unit                  | 3,312 (43.1) |
| Hospital <sup>a</sup> | 4,239 (59.2) |

### **Comparative Haem-Onc Mortality**

|                     | APACHE II | ICU MR |
|---------------------|-----------|--------|
| All comers          | 16.5      | 21.5   |
| Chronic Dialysis    | 24.7      | 26.5   |
| Acute kidney injury | 20.2      | 58.6   |
| Sepsis (SOAP study) |           | 27.0   |
| Acute pancreatitis  | 17.0      | 30.6   |
| COPD                | 13.4      | 23.1   |
| Haem-onc            | 24.4      | 43.1   |

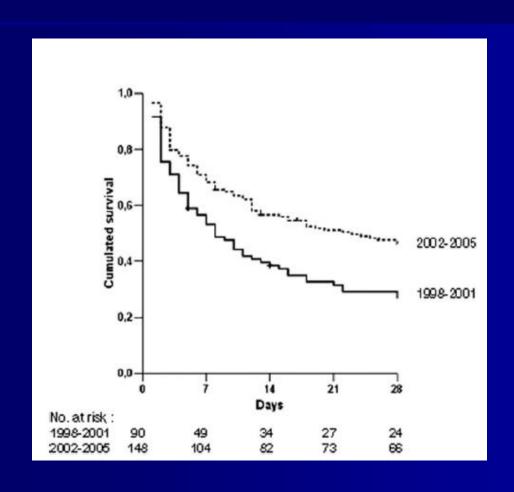
All data from ICNARC with the exception of the Sepsis data (taken from the SOAP study)

### What has changed

- New drugs
  - GCSF
  - New antibiotics and antifungals
- New techniques
  - Less myeloablative techniques
  - More autologous transplants
- Changes in ICU care
  - Early ICU admission
  - GDT
  - Less therapeutic nihilism

## Debunking the myths

- Disease status
- Neutropenia
- Sepsis
- Recent chemotherapy
- Mechanical Ventilation


### Disease prognosis does not affect ICU survival

|                                    |         | М        | ortality |           |
|------------------------------------|---------|----------|----------|-----------|
| Variable                           | ICU     | Hospital | 6-Month  | Long Term |
| Univariate analysis                |         |          |          |           |
| Age                                |         | _        | _        | 0.065     |
| Sex                                | 0.058   | _        | _        | _         |
| BMI                                |         | _        | 0.046    | _         |
| Creatinine                         | 0.024   | _        | _        | _         |
| APACHE II                          | _       | _        | _        | _         |
| SAPS II                            | 0.027   | _        | _        | _         |
| LODS                               | 0.043   | _        | _        | _         |
| MODS                               | 0.002   | 0.062    | _        | _         |
| Respiratory                        | < 0.001 | 0.018    | _        | _         |
| Cardiovascular                     | _       | _        | _        | _         |
| Renal                              | 0.055   | _        | _        | _         |
| Hepatic                            | _       | _        | _        | _         |
| Neurologic                         | _       | _        | _        | _         |
| Hematologic                        | _       | _        | _        | _         |
| OSF                                | 0.005   | 0.009    | _        | _         |
| Aplasia                            | _       | _        | _        | _         |
| Respiratory culture                | 0.032   | 0.035    | _        | _         |
| Fungal infection                   | 0.085   | 0.009    | 0.050    | 0.033     |
| Transplant status                  | _       | _        | 0.046    | 0.013     |
| Hemopathy disease                  | 0.067   | 0.035    | 0.017    | 0.080     |
| Tumor progression                  | _       | 0.053    | 0.023    | 0.002     |
| Hematologic prognosis              | _       | 0.089    | 0.058    | 0.002     |
| Multivariate analysis <sup>a</sup> |         |          |          |           |
| Age                                | _       | _        | _        | 0.014     |
| MODS                               | _       | _        | 0.057    | _         |
| Respiratory                        | 0.001   | _        | _        | _         |
| Renal                              | 0.073   | _        | _        | _         |
| OSF                                | _       | 0.005    | _        | _         |
| Fungal infection                   | 0.053   | 0.009    | 0.076    | _         |
| Transplant status                  |         | 0.018    | 0.003    | < 0.001   |
| Hemopathy disease                  | _       | _        | 0.044    | _         |
| Tumor progression                  | _       | 0.067    | 0.004    | 0.020     |
| Hematologic prognosis              |         | _        | _        | 0.004     |
|                                    |         |          |          |           |

### **Neutropenia does not affect ICU survival**

| Table 2 Predictors of 30-day mortality in | n bivariate analyses using a lo | gistic regression | n model and a Cox model |                   |  |
|-------------------------------------------|---------------------------------|-------------------|-------------------------|-------------------|--|
| Parameters                                | Logistic model                  |                   | Cox model               | Cox model         |  |
|                                           | Odd-ratio (95% CI)              | P value           | Hazard-ratio (95% CI)   | P value           |  |
| Patient characteristics                   |                                 |                   |                         |                   |  |
| Age >60                                   | 1.03 (1.00-1.06)                | 0.05              | 1.02 (1.00-1.05)        | 0.03              |  |
| Female gender                             | 1.63 (0.73-3.64)                | 0.23              | 1.43 (0.85-2.41)        | 0.18              |  |
| Knaus scale C or D                        | 1.02 (0.35-2.98)                | 0.97              | 1.07 (0.53–2.19)        | 0.84              |  |
| Malignancy characteristics                |                                 |                   |                         |                   |  |
| Solid tumor                               | 1.00                            |                   | 1.00                    |                   |  |
| Leukemia                                  | 1.34 (0.49-4.00)                | 0.54              | 1.43 (0.72–2.85)        | 0.30              |  |
| Lymphoma                                  | 2.01 (0.75-5.44)                | 0.17              | 1.40 (0.76–2.60)        | 0.28              |  |
| Myeloma                                   | 0.48 (0.11–2.16)                | 0.34              | 0.67 (0.20–2.45)        | 0.52              |  |
| Radiation therapy                         | 1.23 (0.46-3.33)                | 0.68              | 1.08 (0.57-2.04)        | 0.82              |  |
| Methotrexate                              | 0.30 (0.09-0.93)                | 0.04              | 0.45 (0.18-1.14)        | 0.09              |  |
| Cyclophosphamide                          | 1.79 (0.81–3.95)                | 0.15              | 1.40 (0.83-2.36)        | 0.21              |  |
| Complete remission                        | 0.75 (0.28-1.98)                | 0.55              | 0.76 (0.39–1.51)        | 0.44              |  |
| Reason for admission                      |                                 |                   |                         |                   |  |
| Acute respiratory failure                 | 2.49 (0.93-6.68)                | 0.07              | 1.96 (0.93-4.14)        | 0.08              |  |
| Shock                                     | 1.96 (0.88-4.34)                | 0.10              | 1.71 (1.00–2.94)        | 0.05              |  |
| Acute renal failure                       | 2.20 (0.91-5.31)                | 0.08              | 1.69 (0.99-2.88)        | 0.05              |  |
| Neurological failure (coma)               | 1.92 (0.55-6.70)                | 0.31              | 1.57 (0.77–3.20)        | 0.21              |  |
| Clinical sepsis                           | 1.52 (0.58-3.98)                | 0.40              | 1.33 (0.67-2.62)        | 0.41              |  |
| SAPS II score                             | 1.06 (1.03–1.09)                | <10 <sup>-4</sup> | 1.04 (1.03–1.05)        | <10-4             |  |
| Neutropenia                               |                                 |                   |                         |                   |  |
| Neutropenia recovery                      | 0.06 (0.01–0.52)                | 0.01              | 1.30 (0.69-2.44)        | 0.42              |  |
| In-ICU neutropenia                        | 0.98 (0.90–1.02)                | 0.6               | ,                       |                   |  |
| Treatments                                |                                 |                   |                         |                   |  |
| Vasopressor agents                        | 7.30 (2.89–18.42)               | <10-4             | 3.92 (1.92-8.00)        | <10 <sup>-4</sup> |  |
| Invasive mechanical ventilation           | 32.62 (8.78–121.28)             | <10-4             | 13.98 (4.35–44.91)      | 2. 10-4           |  |
| Noninvasive mechanical ventilation        | 0.40 (0.18–0.91)                | 0.03              | 0.49 (0.28–0.86)        | 0.01              |  |
| G-CSF                                     | 1.60 (0.73–3.51)                | 0.24              | 1.35 (0.80–2.28)        | 0.26              |  |
| Dialysis                                  | 3.17 (1.20–8.35)                | 0.02              | 1.51 (0.88–2.59)        | 0.13              |  |

# Sepsis has a similar ICU outcome in Cancer and non-Cancer patients



#### Use of chemotherapy prior to admission does not affect ICU

#### survival

|                                                                | OR   | 95% CI     | p       |
|----------------------------------------------------------------|------|------------|---------|
| Unadjusted                                                     |      |            |         |
| Intravenous chemotherapy                                       | 0.51 | 0.28-0.911 | 0.023   |
| Adjusted for variables before ICU admission <sup>a</sup>       |      |            |         |
| Intravenous chemotherapy                                       | 0.35 | 0.16-0.75  | 0.007   |
| Age (per year)                                                 | 1.01 | 0.99-1.03  | 0.295   |
| High-grade malignancy                                          | 1.22 | 0.60-2.51  | 0.586   |
| Active disease                                                 | 2.11 | 1.09-4.06  | 0.026   |
| Combination antibiotic therapy                                 | 2.54 | 1.24-5.22  | 0.011   |
| Neutropenia                                                    | 1.09 | 0.53-2.25  | 0.812   |
| Days of hospitalization (per day)                              | 0.99 | 0.97-1.01  | 0.432   |
| Adjusted for variables upon ICU admission                      |      |            |         |
| and the most important variables before admission <sup>b</sup> |      |            |         |
| Intravenous chemotherapy                                       | 0.48 | 0.23-1.00  | 0.049   |
| Active disease                                                 | 1.98 | 0.95-4.14  | 0.069   |
| Combination of antibiotic therapy                              | 1.52 | 0.71-3.23  | 0.280   |
| Pulmonary site of infection                                    | 2.84 | 1.38-5.84  | 0.005   |
| Fungal infection                                               | 4.18 | 1.61-10.87 | 0.003   |
| SOFA (per point)                                               | 1.26 | 1.14-1.39  | < 0.001 |
| Additionally adjusted for propensity score <sup>c</sup>        |      |            |         |
| Intravenous chemotherapy                                       | 0.50 | 0.23-1.08  | 0.079   |
| Active disease                                                 | 1.76 | 0.80-3.84  | 0.158   |
| Combination of antibiotic therapy                              | 1.51 | 0.65-3.49  | 0.341   |
| Pulmonary site of infection                                    | 2.85 | 1.39-7.57  | 0.009   |
| Fungal infection                                               | 4.04 | 1.50-10.83 | 0.006   |
| SOFA (per point)                                               | 1.28 | 1.15-1.42  | < 0.001 |
| Propensity score                                               | 1.52 | 0.18-12.68 | 0.697   |

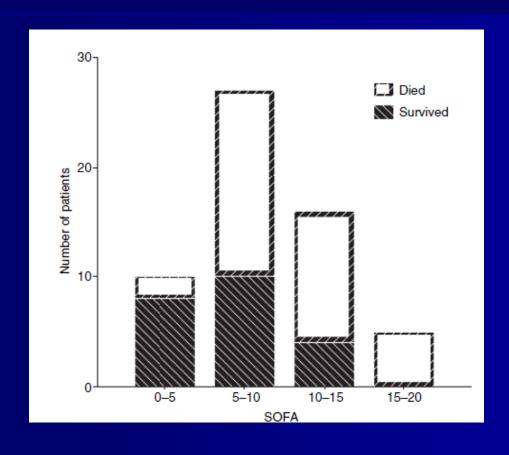
<sup>&</sup>lt;sup>a</sup>Hosmer and Lemeshow:  $\chi^2$  = 9.04, df 8, p = 0.34, ROC 0.68 (0.60–0.75), SE = 0.039; <sup>b</sup>Hosmer and Lemeshow:  $\chi^2$  = 6.07, df 8, p = 0.64, ROC 0.82 (0.74–0.87), SE = 0.032; <sup>c</sup>Hosmer and Lemeshow:  $\chi^2$  = 3.42, df 8, p = 0.91, ROC 0.81 (0.75–0.87), SE = 0.032

#### Ventilation in the first 24hrs does not affect survival in ICU

- ICNARC review of haemato-oncology ICU admissions
  - ➤ IMV within 24 hours of admission not associated with increased mortality after adjustment for other prognostic factors
  - > 70.2% of intubated patients died in hospital
  - ➤ 45.3% of non-intubated died in hospital

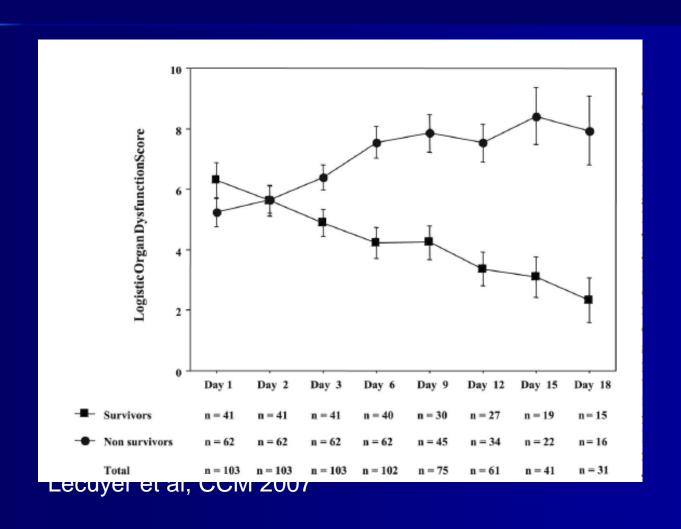
# RMH ICU results for patients ventilated in the first 24 hours

- N=81
- ICU mortality 58.8%
- Hospital mortality 64.7%
- 6 month mortality 72.5%.


# What *does* predict outcomes?

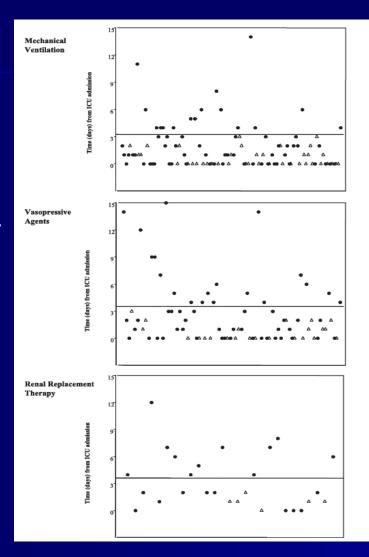
- Organ failure √
- Progression of organ failure √

### Organ failure


- High initial organ failure score
- Progress of organ dysfunction
- Development of OF post admission

### **Initial SOFA scores predict survival**




Cornet et al, Eur J Haematol 2005

### **Progress of OF predicts survival**



### Development of late Organ Failures predicts death

Black dot = Non survivor Open triangle = survivor



Time refers to time from admission to development of organ failure

### OF progression predicts death but not foolproof!

Above the line = Deteriorating organ status Black dot = Survivor Clear dot = Non survivor

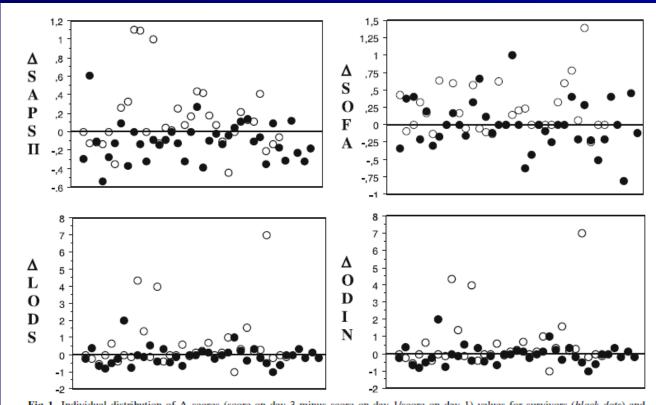



Fig. 1 Individual distribution of  $\Delta$  scores (score on day 3 minus score on day 1/score on day 1) values for survivors (black dots) and nonsurvivors (white dots). Each dot represents one patient

### **Scoring systems**

- Most scoring systems fare badly
- Tendency to underestimate mortality
- Accurate at extremes
- ICMM designed specifically for cancer patients

### So...who should I admit to ICU?

- Survival has improved for critically ill cancer patients
- Classic predictors of mortality have lost much of their value
- The characteristics of the malignancy are not associated with ICU mortality
- Scoring systems do not perform well
- Mortality depends on organ failures at presentation and at 3 days

### So...who should I admit to ICU?

Request for admission to ICU

All other patients

Bedridden patients
Very poor disease prognosis
Patient refuses

No ICU admission

4 day trial admission with full treatment with re-assessment on day 5

Prev untreated
Tumour lysis
Patients in remission

Full ICU
management

### **Bone marrow transplantation**

- 50-60,000/yr Most autologous
- Most common
  - Multiple myeloma
  - NHL
  - AML
  - Hodgkins

Approx 15% end up in ICU

### **Bone marrow Transplantation**

- Preconditioning
  - Chemotherapy
  - Radiotherapy
  - Ablative vs non-ablative
- Stem cell source
  - Autologous
  - Allogeneic
    - Cord
    - Matched related
    - Matched unrelated

### **Reasons for admission to ICU**

#### Respiratory system

Airway

Pneumonia

Pulmonary edema

Acute respiratory distress syndrome (ARDS)

Idiopathic pneumonia syndrome (IPS)

Diffuse alveolar hemorrhage (DAH)

Per-engraftment respiratory distress syndrome (PERDS)

#### Cardiovascular system

Septic shock

Hypovolemic shock (dehydration and bleeding)

Cardiogenic shock

Obstructive shock

Central nervous system

Seizure

Intracranial bleeding

Gastrointestinal system

Gastrointestinal bleeding

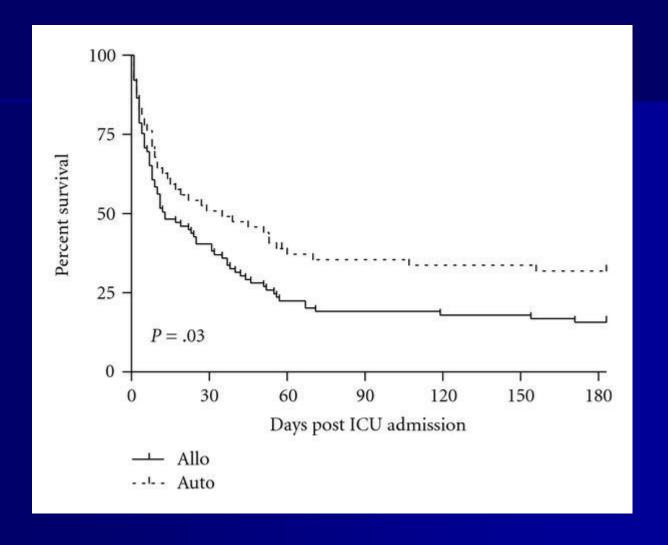
Hepatic failure

Neutropenic colitis

Renal failure

### **RMH ICU BMT data**

- N=87
- ICU mortality 36.8%
- Hospital mortality 49.4%
- 6-month mortality 63.2%


### **BMT prognosis in ICU**

- - Autograft

- Younger age
- Resp failure
  - Pulmonary Oedema
  - Bacterial Pneumonia

 Ventilation for less than 7 days

- Predictors of good outcome Predictors of poor outcome
  - Allograft
    - GVHD
    - Increasing HLA mismatch
  - Increasing Age
  - Recurrent malignancy
  - Resp failure
    - DAH
    - IPS
    - BOOP
    - CMV, RSV
    - Aspergillosis
  - Ventilation for more than 7 days



#### **Invasive Ventilation and mortality for BMT recipients**

| Study                          | Years     | Total | Invasive MV      | Mortality of<br>Invasive MV |
|--------------------------------|-----------|-------|------------------|-----------------------------|
| Torrecilla <sup>14</sup>       | 1981–1987 | 25    | 16 (64%)         | 15 (94%)                    |
| Denardo <sup>6</sup>           | 1979–1984 | 50    | 44 (88%)         | 40 (91%)                    |
| Faber-Langendoen <sup>48</sup> | 1978-1990 |       | 191              | 173 (91%)                   |
| Afessa <sup>5</sup>            | 1982–1990 | 35    | 27 (77%)         | 25 (93%)                    |
| Crawford <sup>46</sup>         | 1986–1990 |       | 348              | 333 (96%)                   |
| Paz <sup>12</sup>              | 1984–1991 | 36    | 28 (78%)         | 27 (96%)                    |
| Epler <sup>47</sup>            | 1985–1991 |       | 71               | 64 (90%)                    |
| Paz <sup>16</sup>              | 1984–1993 |       | 25               | 24 (96%)                    |
| Jackson <sup>7</sup>           | 1988–1993 | 116   | 92 (79%)         | 76 (83%)                    |
| Huaringa <sup>49</sup>         | 1992-1993 |       | 60               | 55 (92%)                    |
| Kress <sup>51</sup>            | 1993–1996 |       | 20               | 11 (55%)                    |
| Price <sup>21</sup>            | 1994–1996 | 115   | 48 (42%)         | 39 (81%)                    |
| Khassawneh <sup>30</sup>       | 1991–1999 |       | 78               | 58 (74%)                    |
| Afessa <sup>19</sup>           | 1996–2000 | 112   | 62 (55%)         | 32 (52%)                    |
| Kew <sup>8</sup>               | 1992–2001 | 37    | 25 (68%)         | 20 (80%)                    |
| Soubani <sup>18</sup>          | 1998–2001 | 85    | 51 (60%)         | 41 (80%)                    |
| Scales <sup>13</sup>           | 1992–2002 | 504   | 258 (51%)        | 224 (87%)                   |
| Naeem <sup>11</sup>            | 1998–2003 | 25    | 12 (48%)         | 10 (83%)                    |
| Pene <sup>17</sup>             | 1997–2003 | 209   | 122 (58%)        | 103 (84%)                   |
| Trinkaus <sup>15</sup>         | 2001–2006 | 34    | 20 (59%)         | 11 (55%)                    |
| Total                          |           |       | 805/1383 (58.2%) | 1381/1598 (86.4             |

#### So...which BMT do I admit to ICU?

#### ICU admission

- Pre-engraftment
- No recurrence

#### ICU trial

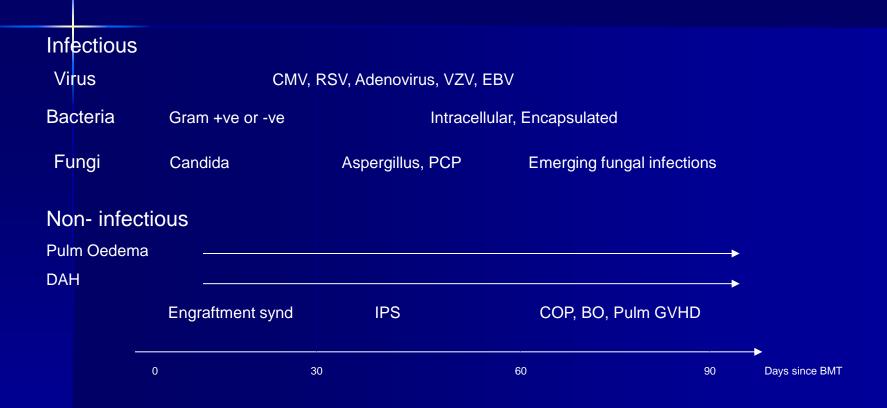
- Unknown disease status
- Recurrence with available treatment options

#### Refusal

- Disease recurrence with no treatment options
- Bedridden
- Severe GVHD

## Infection

- Pre-engraftment (0-30 days)
  - Neutropenia and breaks in mucocutaneous barriers
    - Bacteria
    - Candida
    - Aspergillus
- Early post engraftment
  - Impaired cell mediated immunity
    - CMV
    - PCP
    - Aspergillus
- Late post engraftment
  - Impaired cell mediated and humoral immunity (partic in allogeneic)
    - Viruses
    - Haemophilus
    - Strep
    - TB


# **CXR** clues

| <ul><li>Lobar</li></ul>               | <ul><li>Bacterial</li></ul>                                                                               |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------|
| <ul><li>Diffuse</li></ul>             | <ul><li>Opportunistic</li></ul>                                                                           |
| <ul><li>Acute intersititial</li></ul> | <ul><li>Viral</li></ul>                                                                                   |
| <ul><li>Cavitating</li></ul>          | ■ TB, Klebsiella,                                                                                         |
|                                       | Staph, Nocardia                                                                                           |
| <ul><li>Upper lobes</li></ul>         | <ul> <li>TB, Klebsiella,</li> <li>Meliodosis,</li> <li>Aspergillus,</li> <li>Pneumocystis, CMV</li> </ul> |

## **Investigation of Respiratory failure**

| Radiography              |               |                  |          |  |
|--------------------------|---------------|------------------|----------|--|
| Chest Xray               |               |                  |          |  |
| CT Scan                  |               |                  |          |  |
| Pleural USS/ Echocardio  | graphy        |                  |          |  |
| Microbiology             | Container     | Forms            | Tick     |  |
| Sputum +/- Bronchial     | (in line)     | yellow           |          |  |
| Alveolar Lavage (BAL)    | sputum pots   |                  |          |  |
| MC and S                 | II            | II               |          |  |
| Acid Fast Bacilli (AFB)  | II            | II               |          |  |
| Fungi (Aspergillus)      | II            | II               |          |  |
| Nasopharyngeal           | II            | II               |          |  |
| aspiration               |               |                  |          |  |
| Tests for viruses (viral | II            | II               |          |  |
| and                      |               |                  |          |  |
| immunofluoresence)       |               |                  |          |  |
| Blood Cultures           | Blood culture | II               |          |  |
|                          | bottles       |                  |          |  |
| Serum tests, serology    |               |                  |          |  |
| Chlamydia                | Red top       | yellow           |          |  |
| Mycoplasma               | Red top       | same             |          |  |
| Legionella               | Red top       | same             |          |  |
|                          |               |                  | '        |  |
| CMV/EBV PCR              | Purple (edta) | yellow           |          |  |
| Urine                    |               |                  | <b>-</b> |  |
| MC and S                 | 30 mls urine  | yellow           |          |  |
| Legionella               | 30 mls urine  | yellow           |          |  |
| Cytology                 |               |                  |          |  |
| Urine                    | 30 mls urine  | Orange/ Cytology |          |  |
| Biological marker        |               |                  |          |  |
| CRP                      | Red top       | Biochemistry     |          |  |
| Procalctonin             | Green top     | CCU              |          |  |
| Haematology              | 1             |                  |          |  |
| Fibrinogen/clotting      | Blue top      | Haematology      |          |  |

## Respiratory failure in the BMT patient



#### **NPPV in BMT**

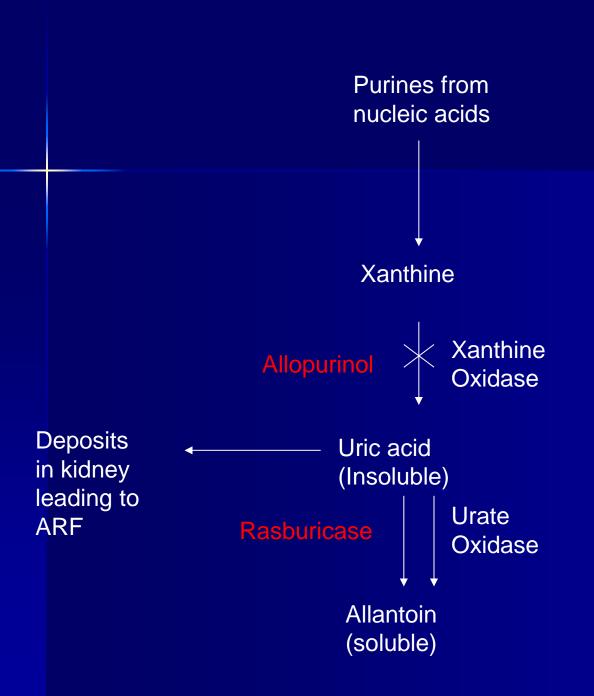
- Possibly decreases mortality
  - Azoulay et al CCM 2001
  - Afessa et al CCM 2003
  - Pene et al J Clin Oncol 06
- Small numbers in the trials
- Requires early intervention and acutely reversible cause
- Anecdotal experience at RMH

# Other potential problems

- GvHD
- Tumour Lysis
- Veno-occlusive disease (VOD)
- Blood product support

## **GVHD**

- Classic Triad
- Can affect lung also
- Management via (more) immunosuppression


## Veno-occlusive disease

- Occurs in first 21 days post Tx
- Due to Hepatic endothelial damage from pre-conditioning
- Thrombosis leads to
  - Weight gain
  - Hepatomegaly
  - Hyperbilirubinaemia
  - Ascites
- Diagnosis with Doppler
- Defibrotide has drastically reduced incidence and mortality

# **Tumour Lysis**

- Typically following induction chemotherapy for leukaemia or lymphoma
- Predicted by an LDH>1500
- Up to a third occur spontaneously

- Causes release of purines, potassium and phosphate
- Consequent
  - Life threatening arrhythmias
  - ARF (uric acid and calcium phosphate deposition)



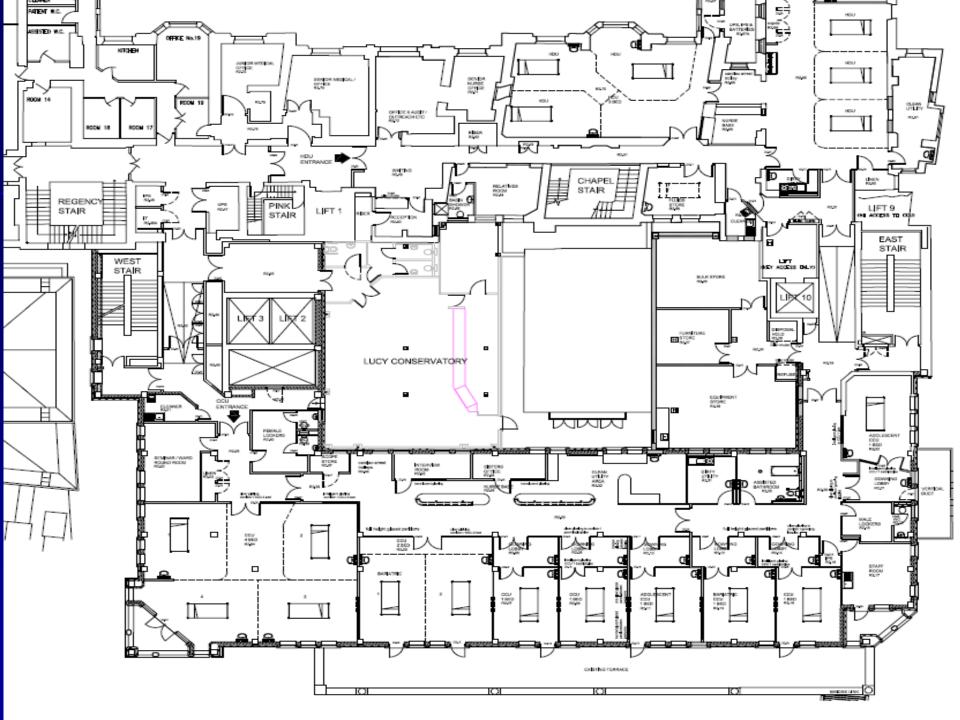
## Prophylaxis

- Hydration
- Allopurinol or rapspuricase
- Avoid urine alkalinization (xanthines more insoluble in alkaline urine)

#### Treatment

- Symptomatic
- Avoid correcting hypocalcaemia unless ECG changes
- Rasburicase
- Filtration

# **Blood product support**


- All products must be irradiated
  - Risk of fatal GvHD from Tx T lymphocytes
- All patients should have CMV –ve products (even if CMV +ve preTx)
  - If non available, leucodepleted red cells of platelets can be used in prev CMV +ve pts

## In conclusion

- Outcomes are improving
- Therapeutic nihilism is self fulfilling

#### BUT....

- Heavy users of resource
- Trials of admission require a clear understanding and a close relationship with the relatives and haematologists!



### Early versus late admission to ICU

Table 4 Multivariable analysis to identify independent risk factors of 30-day mortality. Goodness-of-fit chi-square *P* value >0.05. {*DLOD* [(LOD score on day 3–day 1)/LOD score on day 3]}

|                                        | Odds ratio | 95% CI      | P value |
|----------------------------------------|------------|-------------|---------|
| ICU admission between 1998 and 2000    | 0.231      | 0.054-0.988 | 0.04    |
| Lymphoma                               | 5.6        | 0.40-16.60  | 0.07    |
| Time to antibiotic administration >2 h | 7.05       | 1.17-42.21  | 0.03    |
| DLOD ratio                             | 3.47       | 1.44-8.39   | 0.005   |
| Colloid on day 1                       | 3.43       | 0.63-18-69  | 0.15    |
| Antibiotic adaptation                  | 0.245      | 0.06-0.95   | 0.04    |

Larche et al ICM 2003

# Bigger units get better results

Lecuyer et al, euro resp journal 2008