

Kidney Attack

John A. Kellum, MD

Professor of Critical Care Medicine, Medicine, Bioengineering and Clinical and Translational Science Vice Chair for Research

The CRISMA Center

Department of Critical Care Medicine School of Medicine

Center for Inflammation and Regenerative Modeling McGowan Institute for Regenerative Medicine

Health Policy and Management Graduate School of Public Health

University of Pittsburgh

©University of Pittsburgh 2010

♦ Clinical Research, Investigation, and Systems Modeling of Acute illness ♦ _____

©Univ Pittsburgh 2010

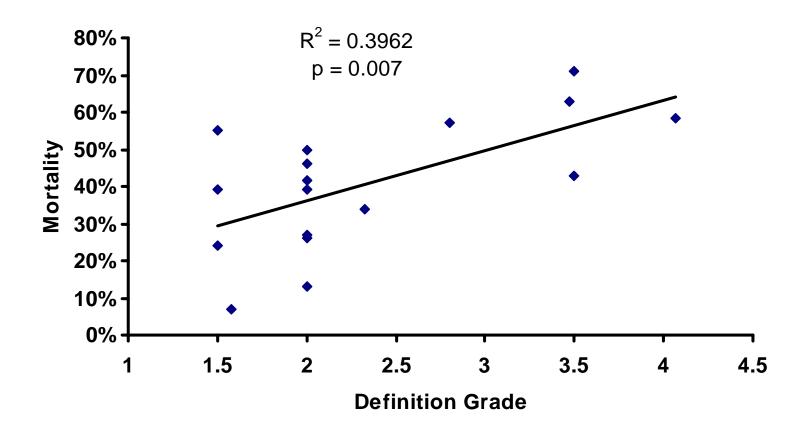
Disclosures

Consultant

- Gambro
- Baxter
- Fresenius
- CytoSorbents
- Alere
- Astute Medical

Grant Support

- Gambro
- Baxter
- CytoSorbents
- Astute Medical


Consider

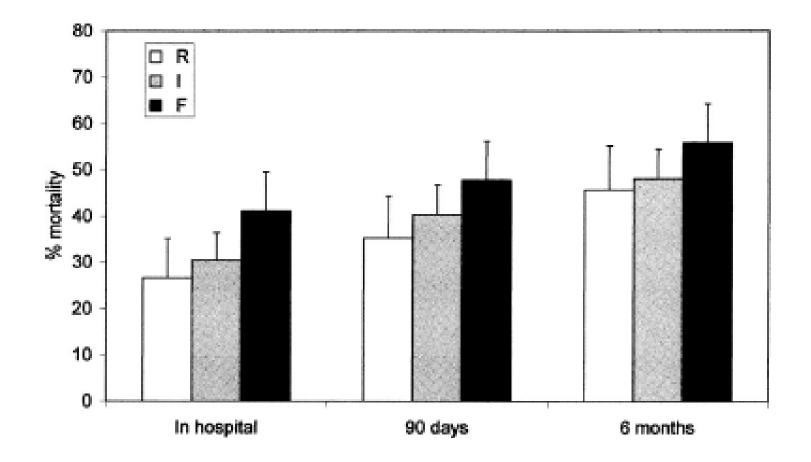
- Millions of patients are admitted to Intensive care units.
 - As many as 2/3 will develop evidence of acute kidney injury (AKI)
 - Nearly half will be at increased risk of death because of AKI
 - 6% of critically ill patients world-wide will loose kidney function completely –60% of these will die JAMA. 2005; 294: 813-818.
- We have no real idea why AKI occurs, why the kidneys fail or why, despite hemodialysis, mortality is so high.
- Throughout the world ~2 million will die this year of a disease whose pathophysiology we do not understand and for which no effective treatment exists.

Definitions of ARF

Kellum et al. Current Opin in Crit Care 2002

RIFLE Criteria for Acute Kidney Injury							
		Sc	ert Criteria*	Urine Output	Criteria		
R isk	Increased creatinine x1.5		ed creatinine x1.5	UO < .5ml/kg/h x 6 hr		High Sensitivity	
Injury	Increased creatinine x2		ased creatinine x2	UO < .5ml/kg/h x 12 hr			
Failu	ire		rease creatinine x3 creatinine ≥4mg/dl (Acute rise of ≥0.5 mg/dl)	UO < .3ml/kg/h x 24 hr or Anuria x 12 hrs	Oliguria	High Specificity	
Loss			Persistent ARF** = complete loss of renal function > 4 weeks				
ESRD		C	End Stage Renal Disease			e 2004, 8:R204-12 w.ADQI.net	
ADQI Acute Dialysis Quality Initiative ADQI							

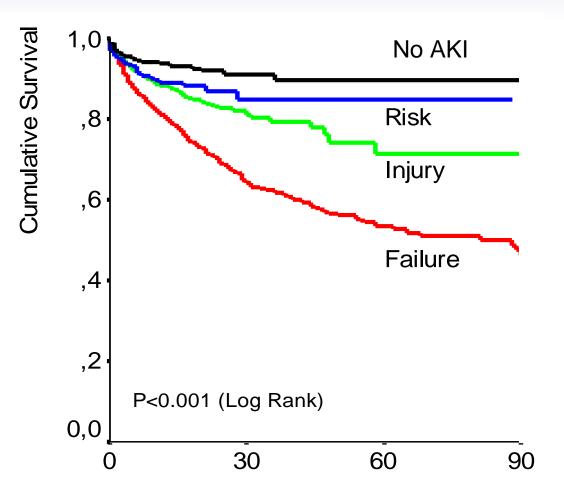
RIFLE has been validated in >500,000 pts


Hospital and ICU based studies

- Recent studies
 - 120,123 patients in 57 ICUs in Australia (Bagshaw et al)
 - * 36.1% developed AKI
 - * Hosp Mortality: R:17.9%, I:27.7%, F:33.2%
 - 41,972 patients in 22 ICUs in Europe (Ostermann et al.)
 - * 35.8% developed AKI
 - * Hosp Mortality: R:20.9%, I:45.6%, F:56.8%

Population based studies

- Northern Scotland (pop 523,390) (Ali et al.)
 - AKI incidence 2147 pmp (16% CKD)
 - By comparison the incidence of acute MI in US is approximately 2667 pmp



Ali et al. J Am Soc Nephrol 18: 1292–1298, 2007

♦ Clinical Research, Investigation, and Systems Modeling of Acute illness ◆

RIFLE max

Days after hospital admission

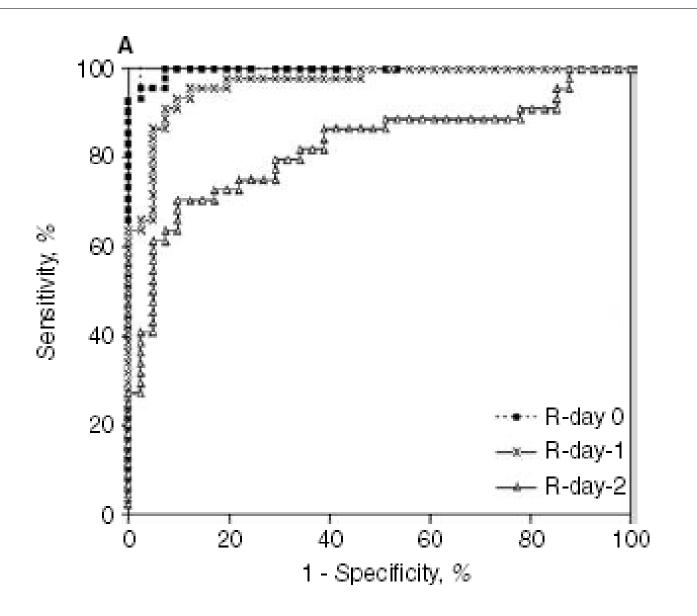
Hoste et al. Crit Care 2006;10:R73

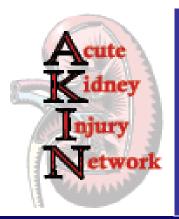
✤ Clinical Research, Investigation, and Systems Modeling of Acute illness ◆

RIFLEmax and mortality (Covariate-adjusted Cox proportional hazard regression analysis).

	B (SE)	Р	HR	95% CI
RIFLE _{max}		<0.001		
Risk	0. 072 (0.207)	0.728	1.075	0.716-1.614
Injury	0.465 (0.147)	0.002	1.592	1.192-2.124
Failure	1.130 (0.132)	<0.001	3.096	2.392-4.006
SOFA _{non-renal} (/point)	0.092 (0.010)	<0.001	1.096	1.075-1.117
Age (/10 yr)	0.151 (0.026)	<0.001	1.163	1.106-1.223

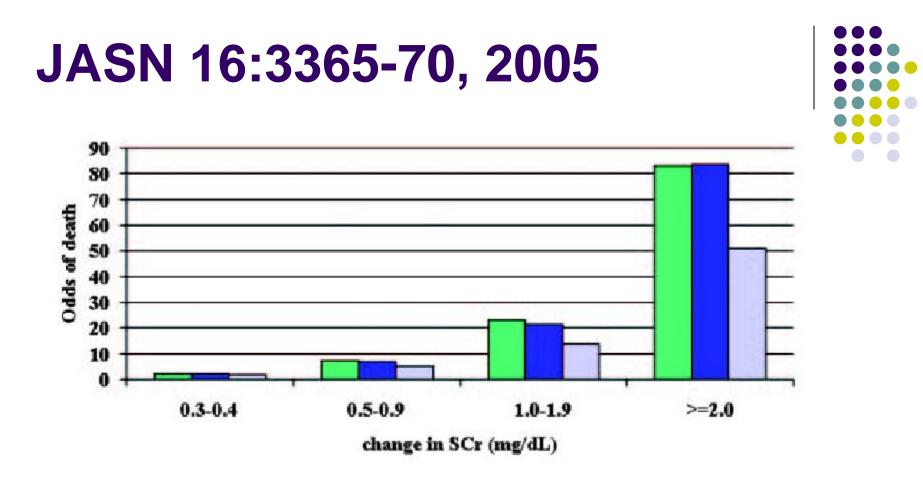
Hoste et al. Crit Care 2006;10:R73

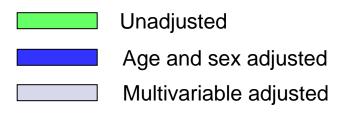

Evolution of ARF by RIFLE

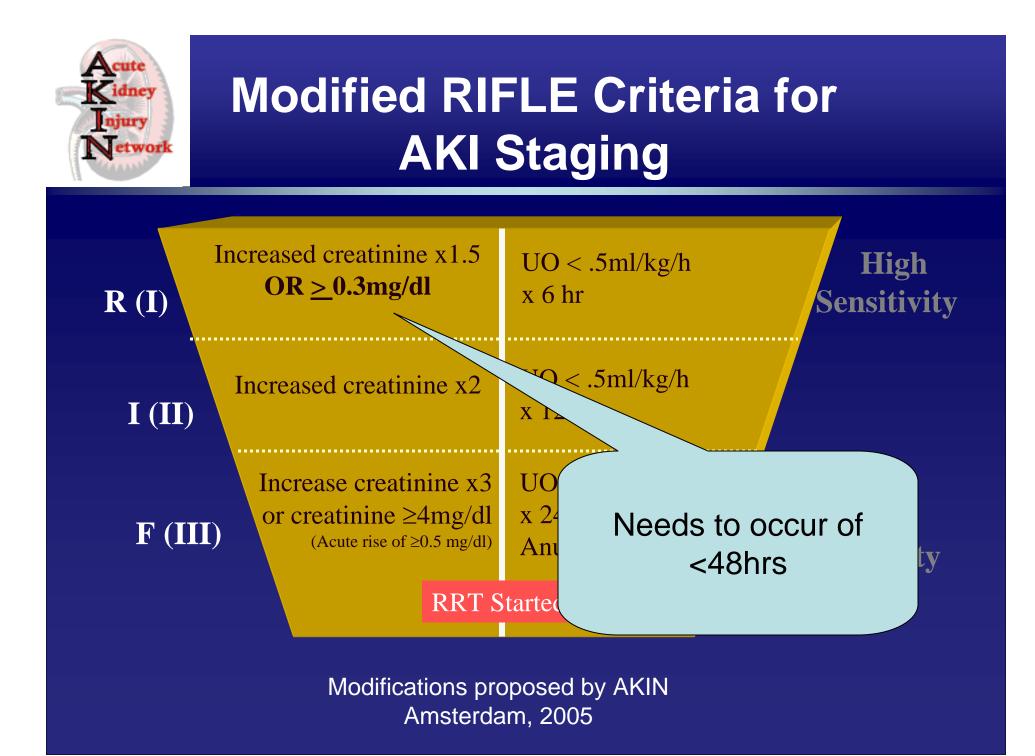

	Evolution rate*	Time (days)
Risk		
No evolution	24.2 %	
Risk to Injury	49.9 %	1.3 (0.5-3.4)
Risk to Failure	25.9 %	4.2 (1.4-9.3)
Injury (development)		
Injury from Risk	32.7 %	1.3 (0.5-3.4)
Started as Injury	67.3 %	
Injury (progression)		
No Evolution	62.6 %	
Injury to Failure	37.4 %	2.0 (0.5-6.3)
Failure		
Failure from Risk	24.7 %	4.2 (1.4-9.3)
Failure from Injury	55.9 %	2.0 (0.5-6.3)
Started as Failure	19.4 %	

Hoste et al. Crit Care. 2006;10(3):R73

♦ Clinical Research, Investigation, and Systems Modeling of Acute illness ♦




Herget-Rosenthal et al: Cystatin C and detection of ARF Kidney International, Vol. 66 (2004), pp. 1115–1122


Recommendations for diagnosis and staging of Acute Kidney Injury

American College of Chest Physicians (ACCP), Acute Dialysis Quality Initiative (ADQI), Australian and New Zealand Intensive Care Society (ANZICS), Asia Pacific Association of Critical Care Medicine (APACCM), Asian Pacific Society of nephrology (APSN), American Society of Nephrology (ASN), American Society of Pediatric Nephrologists (ASPN), American Thoracic Society (ATS), Chinese Society of Nephrology (CSN), European Dialysis and Transplant Association-European Renal Association (EDTA-ERA), European Society of Intensive Care Medicine (ESICM), International Pediatric Nephrology Association (IPNA), Indian Society of Nephrology (ISN), International Society of Nephrology (ISN), National Kidney Foundation (NKF), Society of Critical Care Medicine (SCCM), Sociedade Latino-Americana de Nefrologia e Hipertensão (SLANH), Société de Réanimation de Langue Française (SRLF)

"It is noteworthy that even very small increases in SCr (0.3 to 0.4 mg/dl) were significantly associated with mortality (multivariable OR 1.7; 95% CI, 1.2 to 2.6)."

Sepsis and AKI

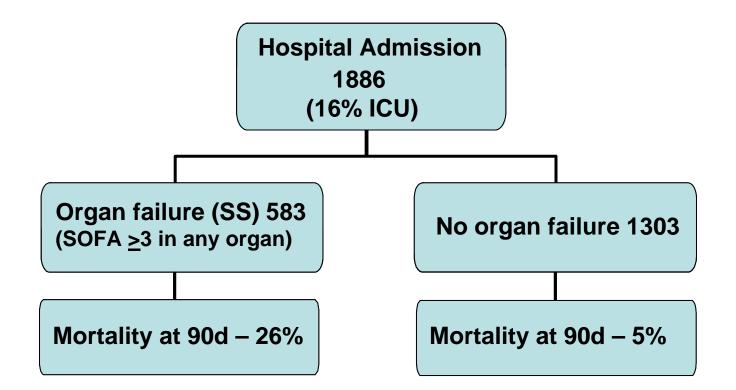
Severe sepsis is the leading cause of AKI and its incidence is increasing.

- 120,123 patients in 57 ICUs in Australia (NDT 2007)
 - ₭ 36.1% developed AKI
 - * Hosp Mortality: R:17.9%, I:27.7%, F:33.2%
 - ♣ 42% with sepsis
- BEST Kidney: 54 Centers in 28 countries (JAMA 2005)
 - # 4.3% received RRT
 - Hospital mortality 60%
 - ♣ 47% with sepsis
- Incidence of AKI specific patient types
 - * Sepsis 37% (Lopes Crit Care 2007;11:408)
 - * Cardiac surgery 16% (Heringlake Min Anest 2006;72:645)
 - Cardiac surgery 19% (Kuitunen Ann Thor Surg 2006;81:542)
 - * CABG 7% (Dasta Nephrol Dial Transplant 2008)

Genetic and Inflammatory Markers of Sepsis (GenIMS)

A multicenter study of pneumonia and sepsis

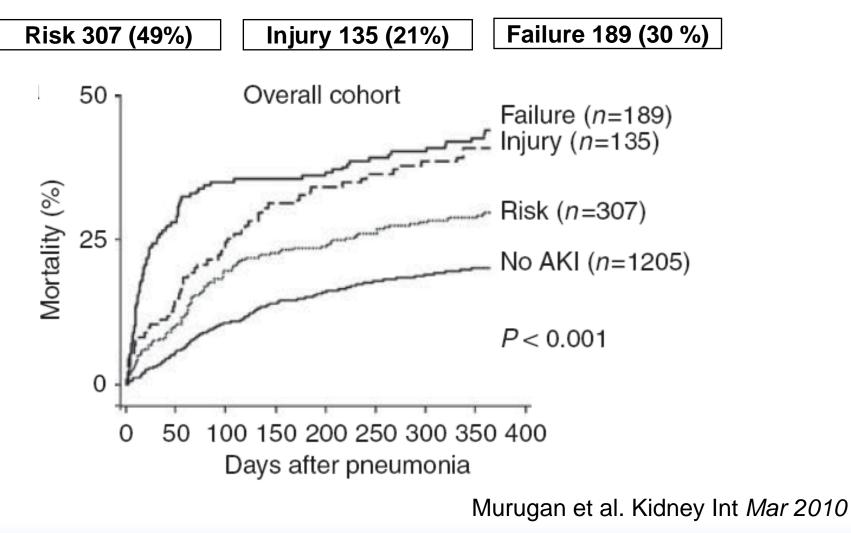
Inception cohort study of patients presenting to ED with CAP

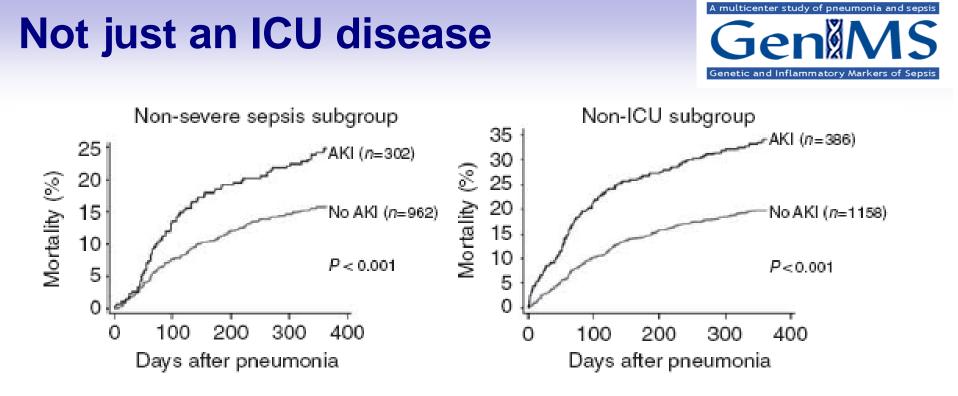

- 28 hospitals clustered in 4 regions
 - Pennsylvania (SW)
 - Connecticut
 - Michigan (Detroit area)
 - Tennessee (Memphis area)

Serial blood sampling and clinical data collection

- Characterize genotype, serum inflammatory and coagulation markers, and clinical outcomes
 - CAP but no progress to severe sepsis
 - CAP progressing to severe sepsis

The GenIMS study of Sepsis in Community Acquired Pneumonia




Kellum JA et al. Arch Intern Med 2007; 167(15):1655-63

AKI Incidence and Survival

AKI 631 (34 %)

	No. (%)			
Characteristica	AKI	No AKI	P-value	
Developed severe sepsis	329 (52.1)	243 (20.1)	< 0.001	
Intensive care unit admission	245 (39)	47 (4)	< 0.001	
Mechanical ventilation	116 (18.4)	13 (1)	< 0.001	
Length of hospital stay, median (IQR)	8 (12–5)	5 (7-4)	< 0.001	
Hospital mortality	70 (11.1)	16 (1.3)	< 0.001	
90-day mortality	151 (24)	118 (9.8)	< 0.001	
1-year mortality	229 (36.3)	242 (20.1)	< 0.001	

Murugan et al. Kidney Int Mar 2010

Specific Treatment

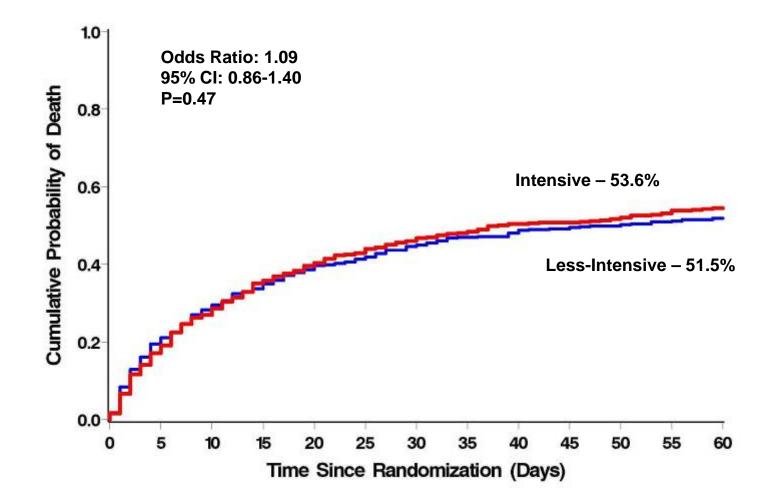
Extracorporeal Kidney Support

- Intensity
- Modality
- Membranes
- Timing (initiation and discontinuation)

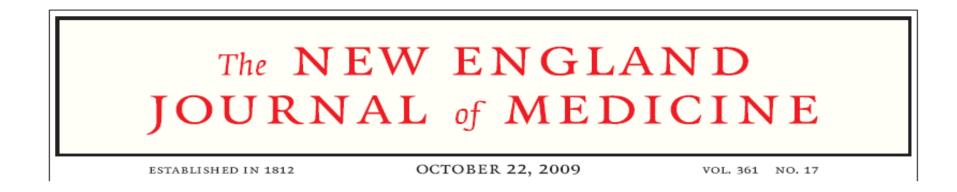
The NEW ENGLAND JOURNAL of MEDICINE

Intensity of Renal Support in Critically Ill Patients with Acute Kidney Injury

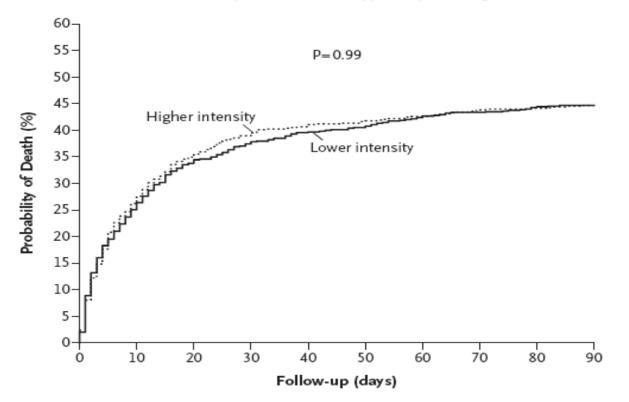
The VA/NIH Acute Renal Failure Trial Network*

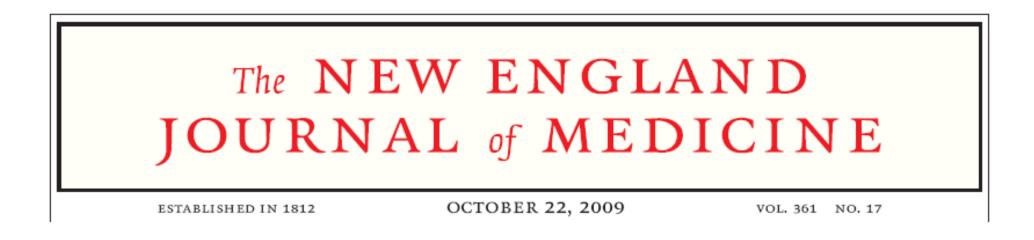

This article (10.1056/NEJMoa0802639) was published at www.nejm.org on May 20, 2008.

N Engl J Med 2008;359. Copyright © 2008 Massachusetts Medical Society.


Clinical Research, Investigation, and Systems Modeling of Acute inness

60-Day All Cause Mortality




Clinical Research, Investigation, and Systems Modeling of Acute illness
 GUniv Pittsburgh 2010
 GUniv Pittsburgh 2010

Intensity of Continuous Renal-Replacement Therapy in Critically Ill Patients

The RENAL Replacement Therapy Study Investigators*

Intensity of Continuous Renal-Replacement Therapy in Critically Ill Patients

The RENAL Replacement Therapy Study Investigators*

	Higher-Intensity CRRT	Lower-Intensity CRRT
RRT dependence among survivors		
At day 28	64/443 (14.4)	57/469 (12.2)
At day 90	27/399 (6.8)	18/411 (4.4)
ATN At day 28	131/275 (47.6)	134/292 (45.9)

Clinical Research, Investigation, and Systems Modeling of Acute illness
 GUniv Pittsburgh 2010
 GUniv Pittsburgh 2010

CLINICAL CHARACTERISTICS BY RIFLEmax

	All n=5383	Non AKI N=1766	Risk n=670	Injury n=1436	Failure n=1511	
Baseline characteristics						
Ν	100 %	32.8 %	12.4 %	26.7 %	28.1 %	
Gender (male)	56.6 %	55.6 %	55.3 %	58.2 %	56.8 %	
Age (yrs) *	60.5 (17.2)	56.7 (18.1)	63.3 (16.9)	62.5 (16.5)	61.7 (16.1)	
APACHE III †	45 (33-59)	36 (26-47)	46 (35-57)	46 (36-59)	56 (41-74)	
SOFA [‡]	6.0 (4.3)	4.9 (3.6)	5.9 (4.1)	6.3 (4.3)	6.9 (4.8)	
SOFA _{non-renal} *	4.9 (3.7)	4.3 (3.2)	5.0 (3.6)	5.2 (3.7)	5.3 (4.0)	
In-hospital before ICU admission §	34.3 %	30.1 %	36.4 %	33.0 %	39.0 %	
Pre-ICU LOS ¶	2 (1-5)	1 (1-4)	2 (1-4)	2 (1-5)	2 (1-6)	
Outcome:						
RRT §	4.1 %	0.1 %	0 %	0.3 %	14.2 %	
LOS ICU (d) **	4 (2-10)	2.0 (2-4)	3 (2-6)	5 (3-10)	9 (4-21)	
LOS Hospital (d) **	8 (4-17)	5 (3–10)	7 (4-13)	9 (5-17)	14 (7-28)	
Mortality §	13.3 %	5.5 %	8.8 %	11.4 %	26.3 %	

Hoste et al. Crit Care 2006;10:R73

♦ Clinical Research, Investigation, and Systems Modeling of Acute illness ◆

Are we waiting too long?

14.2% received renal support

Mortality

 Φ

- Overall 26.3%
- Renal support ~50%
- No renal support ~23%
- No AKI 5.5%

What are the risks of renal support?

Bankruptcy

Access and anti-coagulation

<1% vascular injury/major bleeding</p>

Membranes and fluids

Subramanian et al. Kidney Int. 2002; 62: 1819-23

Hypotension

- Manns et al. Nephrol Dial Transplant 1997; 12: 870-872
- Conger JD. Semin Dial 3: 146-148, 1990

Renal recovery

- HD-associated oliguria
 - Loss of renal (blood flow) auto-regulation
 Clinical Research, Investigation, and Systems Modeling of Acute illness

Conclusions

AKI is a disease of critical illness

- Sepsis is the leading cause
- Hemodynamics are important
- AKI leads to MOF
- AKI is in the causal pathway for mortality

The care of patients with AKI needs to be improved

- Prevention
- Fluid/electrolyte/nutrition management
- Renal support
 - Timing
 - Intensity
 - Modality
- Patients with AKI are often not...
 - Going to ICU
 - Receiving renal support

...justifiably?