Fluid resuscitation and deresuscitation?

Hollmann D. Aya Clinical & Research Fellow St George's University Hospitals NEICS Meeting 2017

Drug: A medicine or other substance which has a physiological effect when ingested or otherwise introduced into the body

Oxford Dictionary

Comparison of Two Fluid-Management Strategies in Acute Lung Injury

The National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network*

Measured intravascular pressure (mm Hg)				MAP	MAP ≥60 mm Hg without vasopressors (except dopamine ≤5 µg/kg/min)					
CVP PAOPG			<60 mm Hg or a need for	Average urinary ou	tp <mark>ut <0.5 ml/kg/hr</mark>	Average urinary output ≥0.5 ml/kg/hr				
Conservative strategy	Liberal strategy	Conservative strategy	Liberal strategy	(except dopamine ≤5 μg/kg/min); consider cor- rectable causes of shock first	Ineffective Circulation Cardiac index <2.5 liters/min/m ² or cold, mottled skin with capillary- refilling time >2 sec	Effective Circulation Cardiac index ≥2.5 liters/min/m ² or absence of criteria for ineffec- tive circulation	Ineffective Circulation Cardiac index <2.5 liters/min/m ² or cold, mottled skin with capillary- refilling time >2 sec	Effective Circulation Cardiac index ≥2.5 liters/min/m ² or absence of criteria for ineffec- tive circulation		
Range 1			1 Vasopressor ^F Fluid bolus ^F	3 KVO IV Dobutamine ^A	7 KVO IV Furosemide ^{B,1,2,4}	11 KVO IV Dobutamine ^A	15 KVO IV Furosemide ^{B,1,3,4}			
>13	>18	>18	>24		Furosemide		Furosennide			
Range 2					4 KVO IV Dobutamine ^A	8 KVO IV Furosemide ^{B,1,2,4}	12 KVO IV Dobutamine ^A	16 KVO IV Furosemide ^{B,1,3,4}		
9–13	15-18	13-18	19-24							
Range 3				2 Fluid bolus ^F Vasopressor ^F	5 Fluid bolus ^C	9 Fluid bolus ^c	13 Fluid bolus ^c	17 Liberal KVO IV		
4-8	10-14	8-12	14-18	.29	25	1	18 Conservative Furosemide ^{B,1,3,4}			
Range 4					<mark>6</mark> Fluid bolus ^c	10 Fluid bolus ^C	14 Fluid bolus ^C	19 Liberal fluid bolus		
<4	<10	<8	<14					20 Conservative KVO IV		

Restricting volumes of resuscitation fluid in adults with septic shock after initial management: the CLASSIC randomised, parallel-group, multicentre feasibility trial

Peter B. Hjortrup¹, Nicolai Haase¹, Helle Bundgaard², Simon L. Thomsen³, Robert Winding⁴, Ville Pettilä⁵, Anne Aaen⁶, David Lodahl⁷, Rasmus E. Berthelsen⁸, Henrik Christensen⁹, Martin B. Madsen¹, Per Winkel¹⁰, Jørn Wetterslev¹⁰, Anders Perner^{1,11*}, The CLASSIC Trial Group, The Scandinavian Critical Care Trials Group

Restriction Group

- Lactate > 4
- MAP < 50 mmHg
- Mottling score > 2
- Oliguria (first 2h) UO <
 0.1 mL/Kg IBW

Standard Care

 Improvement of haemodynamic variables

Restricting volumes of resuscitation fluid in adults with septic shock after initial management: the CLASSIC randomised, parallel-group, multicentre feasibility trial

Peter B. Hjortrup¹, Nicolai Haase¹, Helle Bundgaard², Simon L. Thomsen³, Robert Winding⁴, Ville Pettilä⁵, Anne Aaen⁶, David Lodahl⁷, Rasmus E. Berthelsen⁸, Henrik Christensen⁹, Martin B. Madsen¹, Per Winkel¹⁰, Jørn Wetterslev¹⁰, Anders Perner^{1,11*}, The CLASSIC Trial Group, The Scandinavian Critical Care Trials Group

First 5 days after randomisation

Restricting volumes of resuscitation fluid in adults with septic shock after initial management: the CLASSIC randomised, parallel-group, multicentre feasibility trial

Peter B. Hjortrup¹, Nicolai Haase¹, Helle Bundgaard², Simon L. Thomsen³, Robert Winding⁴, Ville Pettilä⁵, Anne Aaen⁶, David Lodahl⁷, Rasmus E. Berthelsen⁸, Henrik Christensen⁹, Martin B. Madsen¹, Per Winkel¹⁰, Jørn Wetterslev¹⁰, Anders Perner^{1,11*}, The CLASSIC Trial Group, The Scandinavian Critical Care Trials Group

Fluid overload, de-resuscitation, and outcomes in critically ill or injured patients: a systematic review with suggestions for clinical practice

Manu L.N.G. Malbrain¹, Paul E. Marik², Ine Witters¹, Colin Cordemans¹, Andrew W. Kirkpatrick³, Derek J. Roberts^{3, 4}, Niels Van Regenmortel¹

	Su	rvivors		Non	survivo	rs		Mean Difference	Mean Difference
tudy or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV. Random, 95% CI	IV, Random, 95% C
lisous 2000	0.05	0.4	16	2.4	1.7	20	6.1%	-2.35 [-3.12, -1.58]	-
ordemans 2012 (CLI)	4.971	7.737	58	9.503	6.91	65	5.1%	-4.53 [-7.14, -1.93]	
ordemans 2012 (PAL)	3.419	7.842	70	6.982	9.875	44	4.5%	-3.56 [-7.01, -0.12]	
abrowski 2014	-0.963	1.089	24	0.333	0.401	б	6.2%	-1.30 [-1.84, -0.75]	-
oldstein 2005	0.457	0.403	60	0.805	0.858	56	6.3%	-0.35 [-0.59, -0.10]	-
uzkov 2006	0.893	0.668	16	1.782	0.75	15	6.2%	-0.89 [-1.39, -0.39]	-
albrain 2005	1.643	1.5	192	6.214	2.143	73	6.2%	-4.57 [-5.11, -4.04]	
Aalbrain 2014	3.862	6.904	314	5.994	7.546	413	6.1%	-2.13 [-3.19, -1.08]	
Aicek 2013	2.709	2.585	162	12.124	5.463	163	6.1%	-9.42 [-10.34, -8.49]	
lurphy 2009	9.25	0.625	125	15.875	1.125	87	6.3%	-6.63 [-6.89, -6.36]	-
losenberg 2009	5.154	0.769	159	10.308	1.923	635	6.3%	-5.15 [-5.35, -4.96]	
akr 2005	1.4	6.5	239	3.9	7.8	153	5.9%	-2.50 [-3.99, -1.01]	
chuller 1991	0.25	1.6	43	2	2.8	26	6.0%	-1.75 [-2.93, -0.57]	
hum 2011	0.88	2.32	505	5.41	5.05	134	6.1%	-4.53 [-5.41, -3.65]	-
immons 1987	7.5	4.09	11	17.22	2.045	26	5.2%	-9.72 [-12.26, -7.18]	
he RENAL Study 2012	-1.94	11	808	1.755	9.061	644	6.1%	-3.69 [-4.73, -2.66]	
/idal 2008	2.1	3.9	34	16.1	6.4	49	5.4%	-14.00 [-16.22, -11.78]	•
fotal (95% CI)			2836			2609	100.0%	-4.43 [-5.83, -3.04]	•
$eterogeneity: Tau^2 = 8$.09: Chi ² -	- 1894.	59. df	- 16 (P <	0.000	01): I ² -	99%		
leterogeneity: Tau ² – 8 'est for overall effect: Z	.09; Chi ² - = 6.23 (P	- 1894. < 0.00	2836 59, df 001)	= 16 (P <	0.000	2609 01); l ² -	99%	-4.43 [-5.83, -5.04]	Favo

Conservative fluid management or deresuscitation for patients with sepsis or acute respiratory distress syndrome following the resuscitation phase of critical illness: a systematic review and meta-analysis

Jonathan A. Silversides^{1,2*}, Emmet Major², Andrew J. Ferguson³, Emma E. Mann², Daniel F. McAuley^{1,4}, John C. Marshall^{5,6}, Bronagh Blackwood¹ and Eddy Fan⁵

Fig. 3 Forest plot for mortality at most protracted time point available, conservative or deresuscitative fluid strategy versus standard care or liberal fluid strategy

NHS

	Conser	vative fluid		Liber	ral fluid			Mean Difference
Study or Subgroup	Study or Subgroup Mean [Days] SD [Days] To		Total	Mean [Days]	SD [Days]	D [Days] Total Weight IV, Random, 95%		IV, Random, 95% CI [Days]
Chen and Kollef. 2015	5.5	9.4	41	7.4	12.9	41	6.5%	
Zhang et al. 2015	9	17.9	168	10.3	18.7	182	10.3%	- + •
Hjortrup et al. 2016	21.4	9.7	75	19.8	11.1	76	13.3%	
Martin et al. 2005	10.3	8	20	8	8	20	6.4%	
Wiedemann et al. 2006	14.6	11.2	503	12.1	11.1	497	51.6%	
Richard et al. 2015	12.7	18.7	30	9.7	16.3	30	2.1%	
Benakatti et al. 2014	15.8	10.8	54	12.1	9.4	47	9.8%	
Total (95% CI)			891			893	100.0%	•
Heterogeneity: $Tau^2 = 0$.	0.36);	$ ^2 = 9\%$				10 5 0 -5 -10		
Test for overall effect: Z					Fa	avours conservative Favours liberal		
Fig. 4 Forest plot for outco		Γ	MD 1.82	(95%	% CI 0.	53 – 3.10)		

	Conservative fluid		Liberal fluid				Mean Difference	Mean Difference	
Study or Subgroup	Mean [Days] SD [Days] Total		Mean [Days] SD [Days] Total		Weight	IV, Random, 95% CI [Days]	IV, Random, 95% CI [Days		
Benakatti et al. 2014	7.1	5.5	54	10.3	6.5	47	15.5%	-3.20 [-5.57, -0.83]	
Hjortrup et al. 2016	6.7	6.1	75	6	5.3	76	17.5%	0.70 [-1.12, 2.52]	
Hu et al. 2014	12.5	3.5	15	15.5	2.5	14	16.1%	-3.00 [-5.20, -0.80]	
Mitchell et al. 1992	13.5	10.7	52	18	10.7	49	9.8%	-4.50 [-8.68, -0.32]	
Richard et al. 2015	18.7	17.1	30	17	14.8	30	3.9%	1.70 [-6.39, 9.79]	
Wang et al. 2014	12.1	3.2	50	15.8	4.6	50	18.5%	-3.70 [-5.25, -2.15]	
Zhang et al. 2015	9	6	168	8.8	8.2	182	18.7%	0.20 [-1.30, 1.70]	
Total (95% CI)			444			448	100.0%	-1.88 [-3.64, -0.12]	•
Heterogeneity: Tau ² = 3.74; Chi ² = 24.47, df = 6 (P = 0.0004); l ² = 75%									
Test for overall effect: Z = 2.09 (P = 0.04)								E	-10 -3 0 3 1

Fig. 5 Forest plot for ICU length of stay, conservative or deresuscitative fluid strategy versus standard care or liberal fluid strategy

Fluid overload

RESUSCITATION

EARLY GOAL-DIRECTED THERAPY IN THE TREATMENT OF SEVERE SEPSIS AND SEPTIC SHOCK

EMANUEL RIVERS, M.D., M.P.H., BRYANT NGUYEN, M.D., SUZANNE HAVSTAD, M.A., JULIE RESSLER, B.S., ALEXANDRIA MUZZIN, B.S., BERNHARD KNOBLICH, M.D., EDWARD PETERSON, PH.D., AND MICHAEL TOMLANOVICH, M.D., FOR THE EARLY GOAL-DIRECTED THERAPY COLLABORATIVE GROUP*

EARLY GOAL-DIRECTED THERAPY IN THE TREATMENT OF SEVERE SEPSIS AND SEPTIC SHOCK

EMANUEL RIVERS, M.D., M.P.H., BRYANT NGUYEN, M.D., SUZANNE HAVSTAD, M.A., JULIE RESSLER, B.S., ALEXANDRIA MUZZIN, B.S., BERNHARD KNOBLICH, M.D., EDWARD PETERSON, PH.D., AND MICHAEL TOMLANOVICH, M.D., FOR THE EARLY GOAL-DIRECTED THERAPY COLLABORATIVE GROUP*

TABLE 4. T	REATMENTS /	ADMINISTERED.	*
TREATMENT	Hours	AFTER THE START O	F THERAPY
	0-6	7-72	0-72
Total fluids (ml)			
Standard therapy	3499±2438	10,602±6,216	13,358±7,729
EGDT	4981±2984	8,625±5,162	$13,443\pm6,390$
P value	< 0.001	0.01	0.73
Mechanical ventilation (%)			
Standard therapy	53.8	16.8	70.6
EGDT	53.0	2.6	55.6
P value	0.90	< 0.001	0.02

Surviving sepsis campaign recommendation

What is a fluid challenge?

Mean systemic filling pressure

What is the **time course effect** of a fluid challenge?

Pharmacodynamics of a fluid challenge

- 50 Fluid challenges (250 mL Crystalloids) in 26 patients infused over 5 min
 - No septics
 - No bleeding

Haemodynamics:

- arterial pressure
- heart rate,
- cardiac output (LiDCOplus),
- CVP
- Pmsa: Pmsf analogue (calculated by a computer)

Pharmacodynamic outcomes

Statistical analysis

- Multi-level analysis
- Bayesian framework
 - Probability >0.95 or < 0.05 = strong evidence</p>
 - Probability > 0.79 or < 0.21 = fairly good evidence</p>

RESULTS

Pharmacodynamic Analysis of a Fluid Challenge

Hollmann D. Aya, MD¹; Irina Chis Ster, PhD²; Nick Fletcher, MD¹; R. Michael Grounds, MD¹; Andrew Rhodes, MD¹; Maurizio Cecconi, MD¹

TABLE 2. The Predicted Means in Each Group After a Fluid Challenge With Crystalloids, theEstimated Difference Between Groups Adjusted for the Baseline and the Bayesian ProbabilityThat the Difference Between Responders and Nonresponders Is Greater Than Zero

	Responders, Mean (95% Crl)	Nonresponders, Mean (95% Crl)	∆(R − NR), Mean (95% Crl)	Probability (∆(R – NR) > 0)
Mean arterial pressure				
AUC (mm Hg∙min)	54.39 (18.14 to 88.82)	63.06 (29.04 to 97.06)	-8.67 (-57.70 to 38.72)	0.36
d _{max} (mm Hg)	9.35 (4.30 to 14.36)	12.15 (7.13 to 17.23)	-2.80 (-10.02 to 4.22)	0.21
T _{max} (min)	1.58 (-0.15 to 3.31)	4.50 (2.67 to 6.33)	-2.92 (-5.44 to -0.41)	0.01
E _{max} (mm Hg)	82.76 (77.71 to 87.77)	85.51 (80.49 to 90.59)	-2.75 (-9.97 to 4.28)	0.22
<i>d</i> ₁₀ (mm Hg)	3.84 (0.95 to 6.66)	4.22 (1.22 to 7.26)	-0.39 (-4.52 to 3.70)	0.43
Cardiac output				
AUC (L)	4.64 (2.63 to 6.64)	2.72 (1.12 to 4.39)	1.93 (-0.70 to 4.50)	0.93
<i>d</i> _{max} (mm Hg)	0.87 (0.51 to 1.22)	0.58 (0.27 to 0.90)	0.29 (-0.20 to 0.75)	0.89
T _{max} (min)	1.16 (-0.56 to 2.84)	3.77 (2.28 to 5.28)	-2.61 (-4.86 to -0.39)	0.01
E _{max} (mm Hg)	5.65 (5.29 to 6.00)	5.37 (5.06 to 5.69)	0.28 (-0.20 to 0.74)	0.88
d ₁₀ (mm Hg)	0.23 (-0.09 to 0.55)	0.15 (-0.12 to 0.43)	0.08 (-0.35 to 0.50)	0.65

TABLE 2. The Predicted Means in Each Group After a Fluid Challenge With Crystalloids, the Estimated Difference Between Groups Adjusted for the Baseline and the Bayesian Probability That the Difference Between Responders and Nonresponders Is Greater Than Zero

	Responders, Mean (95% Crl)	Nonresponders, Mean (95% Crl)	∆(R − NR), Mean (95% Crl)	Probability (∆(R – NR) > 0)
Pmsf analogue				
AUC (mm Hg⋅min)	21.78 (16.69 to 26.61)	23.31 (18.20 to 28.49)	-1.52 (-8.77 to 5.50)	0.34
d _{max} (mm Hg)	3.72 (2.74 to 4.66)	3.76 (2.80 to 4.70)	–0.03 (–1.38 to 1.30)	0.48
T _{max} (min)	1.50 (0.15 to 2.85)	2.73 (1.28 to 4.20)	-1.23 (-3.21 to 0.72)	0.11
E _{max} (mm Hg)	19.41 (18.43 to 20.35)	19.45 (18.49 to 20.39)	-0.04 (-1.38 to 1.30)	0.48
d ₁₀ (mm Hg)	1.69 (0.97 to 2.41)	1.68 (0.90 to 2.47)	0.01 (-1.05 to 1.07)	0.51
Central venous pressure	9			
AUC (mm Hg⋅min)	15.54 (9.55 to 21.36)	20.45 (14.69 to 26.49)	-4.91 (-13.45 to 3.30)	0.12
d _{max} (mm Hg)	3.02 (1.91 to 4.12)	3.49 (2.43 to 4.55)	-0.47 (-2.00 to 1.03)	0.27
T _{max} (min)	1.08 (-0.17 to 2.37)	1.71 (0.47 to 2.99)	-0.63 (-2.42 to 1.13)	0.23
E _{max} (mm Hg)	12.27 (11.16 to 13.38)	12.74 (11.69 to 13.80)	-0.47 (-2.00 to 1.03)	0.27
d ₁₀ (mm Hg)	1.16 (0.38 to 1.93)	1.58 (0.81 to 2.35)	-0.41 (-1.52 to 0.66)	0.22
Heart rate				
AUC (beats)	7.34 (-5.56 to 19.14)	11.04 (–4.52 to 26.48)	-3.71 (-23.39 to 15.69)	0.35
d _{max} (beats∕min)	-1.53 (-3.43 to 0.22)	-0.57 (-2.78 to 1.65)	-0.96 (-3.80 to 1.82)	0.24
T _{max} (min)	2.52 (0.81 to 4.23)	1.72 (-0.21 to 3.71)	0.80 (-1.82 to 3.38)	0.73
E _{max} (beats∕min)	83.26 (81.36 to 85.01)	84.21 (82.00 to 86.42)	-0.95 (-3.79 to 1.83)	0.25
d₁₀ (beats∕min)	0.62 (-1.02 to 2.28)	0.65 (–1.29 to 2.65)	-0.03 (-2.61 to 2.55)	0.49

This is a very small dose of fluids....

What is the minimal volume for a fluid challenge?

- What is the minimal volume required to increase the Pmsf?
- May Different doses of fluids affect the changes in Cardiac Output?
- May different doses of fluids affect the proportion of responders and non-responders?

Hemodynamic Effect of Different Doses of Fluids for a Fluid Challenge: A Quasi-Randomized Controlled Study

Hollmann D. Aya, MD¹; Andrew Rhodes, MD(Res)¹; Irina Chis Ster, PhD²; Nick Fletcher, MD(Res)¹; R. Michael Grounds, MD(Res)¹; Maurizio Cecconi, MD(Res)¹

Methods

Study protocol

Baseline Measurements: Pmsf-arm, MAP, CO, SV, HR, CVP

Fluid challenge

T1 Measurements: Pmsf-arm, MAP CO, SV, HR, CVP

Transient stop-flow arm arterial-venous equilibrium pressure measurement: determination of precision of the technique

Hollmann D. Aya¹ · Andrew Rhodes¹ · Nick Fletcher¹ · R. Michael Grounds¹ · Maurizio Cecconi¹

Fig. 1 Mean radial arterial pressure (Pa) and forearm venous pressure (Pv) during one cuff inflation

Fig. 3 Relationship between the least significant change (LSC) and coefficient error (CE) for the Pmsf-arm measurement technique and the number of replicates used to calculate the average

Change in Pmsf-arm by dose of crystalloids

Percentage of responders and non-responders by dose of crystalloids in a fluid challenge

Responders Non-responders

2 Points for interpretation

Take home message 1

Do we need a de-resuscitation stage?

WHAT ABOUT A MORE CAUTIOUS RESUSCITATION?

