The critically ill haematology patient

Time to think differently?

Background

- The number of patients living with HMs has increased over last 2 decades
- Patients with HMs require admission to ICU for life threatening events related to
 - Complications related to malignancy
 - Complications related to treatment
 - Complications due to immunosuppression

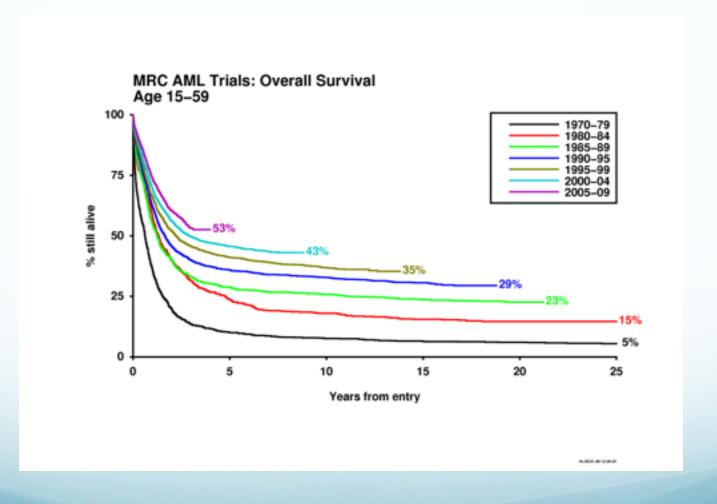
Patient: 23 years old

Relapsed Hodgkins and allograft

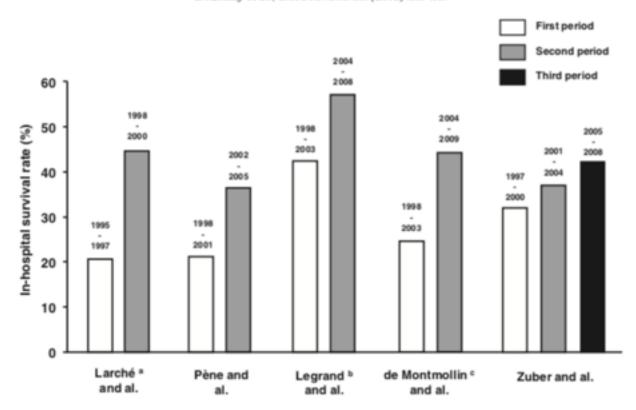
Previous ICU admission with Klebsiella pneumonia

- D + 15 post transplant
- In extremis: oxygen sats 85% on FIO2 1.0, BP 60/45
- ICNARC ICU predicted mortality 55%

Overview for today


Outcomes

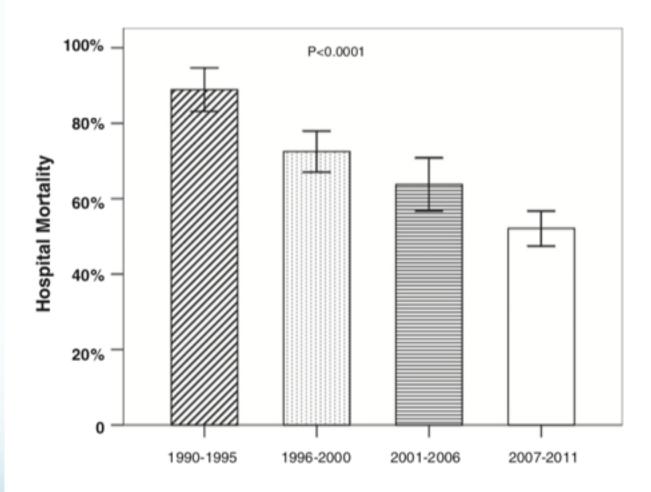
Triaging admission to ICU


Defining treatment goals in ICU

Collaborative approach

AML survival

E. Azoulay et al. / Blood Reviews xxx (2015) xxx-xxx



^{* 30-}day survival rate

arvival of septic shock in patients with cancer managed in GrrrOH-affiliated centers. GrrrOH designates Groupe de Recherche Respiratoire en Réa per's was a multicenter study.

^b Included neutropenic patients with severe sepsis or septic shock

^C Only included patients with septic shock of pulmonary origin

Fig. 2. Hospital mortality in 1004 patients with ARDS managed in GrrrOH-affiliated centers according to period of intensive care unit admission. Figure from Azoulay et al. [27] published in Intensive Care Medicine and copied here with permission. GrrrOH designates Groupe de Recherche Respiratoire en Réanimation Onco-Hématologique.

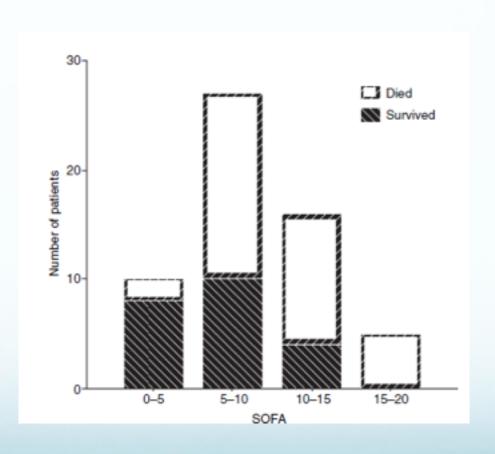
Predicting ITU outcome

- Historic data
- Retrospective
- Single centres
- Conflicting data

Authors	Year	No. of Mortality (%)				
		patients		In-hospital	6 months	Prognostic indicators
Lloyd-Thomas and colleagues ³	1988	60	63	78	N/A	APACHE II score, failure of malignancy to respond to chemotherapy, number of organ failures, leucopenia
Brunet and colleagues ⁴	1990	260	43	57	81	SAPS II score, >1 organ failure, intractable sepsis
Yau and colleagues ¹⁵	1991	92	N/A	77	N/A	Disease progression
Staudinger and colleagues ²¹	2000	414	53	N/A	N/A	Respiratory insufficiency, mechanical ventilation, septic shock
Massion and colleagues ²⁰	2002	84	38	61	75	Respiratory failure, fungal infection, number of organ failure, transplant status
Kroschinsky and colleagues ¹⁹	2002	104	44	N/A	67	SAPS II score, mechanical ventilation, C-reactive protein
Benoit and colleagues ⁶	2003	124	42	54	66	Leucopenia, vasopressor use, urea >0.75
Owczuk and colleagues ¹⁶	2005	40	65	N/A	N/A	SAPS II score, SOFA score, APACHE II score, neutropenia, thrombocyte count, mean arterial pressure, and necessity of catecholamine administration
Lamia and colleagues ¹⁸	2006	92	N/A	58	N/A	SAPS II, LODS, ODIN, SOFA scores
Lim and colleagues ²³	2007	55	69	N/A	N/A	Bilirubin, inotropic support, multiple organ failure
Cuthbertson and colleagues ⁸	2008	714	39	55	N/A	Cardiopulmonary resuscitation within 24 h, mechanical ventilation, inotropic support, APACHE II score
Hampshire and colleagues ¹¹	2009	7689	43	59	N/A	Age, length of hospital stay before ICU admission, severe sepsis, Hodgkin's lymphoma, transplant, tachypnoea, low Glasgow Coma scale, systolic hypotension, sedation, Pa _{O2} :Fi _{O2} ratio, acidaemia, oliguria, hyponatraemia, hypernatraemia, haematocrit, uraemia, alkalaemia

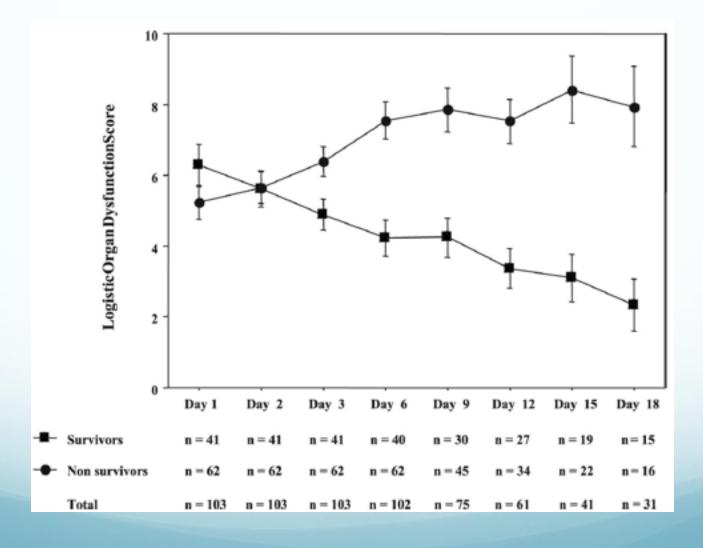
Predicting outcome: old myths

- Age
- Disease status
- Neutropenia
- Sepsis
- Recent chemotherapy
- Mechanical Ventilation
- Renal replacement therapy
- ICU predicted mortality score


Outcome: no change

- 1. Bedridden patients
- 2. No lifespan extending treatment options
- 3. Elderly patients with significant comorbidities
- 4. Patients with multiple comorbidities
- 5. Less than 6months life expectancy
- 6. Allogeneic BMT/HSCT with uncontrolled GVHD
- 7. Invasive pulmonary aspergillosis requiring MV
- Persistent MOF
- 9. Newly diagnosed unresponsive to chemo on ICU
- 10. Recurrent life threatening event post discharge from ICU+/- residual organ dysfunction

What does predict outcome


- Organ failure
- Progression of organ failures
- Allogeneic BMT Recipients

Initial SOFA score

Cornet et al, Eur J Haematol 2005

Progression of organ failures

Predicting outcome in ICU

- Good outcome
 - **Autograft**
 - Younger age
 - Respiratory failure
 Pulmonary Oedema
 Bacterial Pneumonia

Ventilation for less than 7 days

- Poor outcome
 - Allograft GVHD, VOD
 - **Increasing Age**
 - Respiratory failure

 - CMV, RSV Aspergillosis
 - Ventilation for more than 7 days

Triaging admission to ICU

- Admit and full escalation of organ support
 - Pre-engraftment
 - No recurrence
- Trial of organ support
 - Unknown disease status
 - Recurrence with available treatment options
- Refusal
 - Disease recurrence with no treatment options
 - Bedridden
 - Severe GVHD

Treatment goals in ICU

Non-invasive diagnostic and therapeutic strategies

Remove indwelling lines in septic shock

Combination therapy (aminoglycosides)

Monitor levels of organ support

BSH and ICS

Guidelines for admission and management of critically ill haematology patients (2015)

But...

ARTICLE IN PRESS

YBLRE-00391; No of Pages 9

Blood Reviews xxx (2015) xxx-xxx

Contents lists available at ScienceDirect

Blood Reviews

REVIEW

Managing critically Ill hematology patients: Time to think differently

Elie Azoulay ^{c,*}, Frédéric Pène ^a, Michael Darmon ^b, Etienne Lengliné ^c, Dominique Benoit ^d, Marcio Soares ^e, François Vincent ^f, Fabrice Bruneel ^g, Pierre Perez ^h, Virginie Lemiale ^c, Djamel Mokart ⁱ, Groupe de Recherche Respiratoire en Réanimation Onco-Hématologique (Grrr-OH) ¹

- 4 AP-HP Cochin, Paris, France
- b CHU Saint Etienne, France
- ^c AP-HP Saint Louis, Paris, France
- d Universitair ziekenhuis Gent, Belgium
- ^e Instituto Nacional de Câncer, Rio de Janeiro, Brazil
- ^f Monfermeil Hospital, France
- 8 Andre Mignot Hospital, Versailles, France
- h CHU Nancy, France
- i Paoli Calmette Institute, Marseilles, France

What to do

- Optimal life support based on most recent data from general ICU patients
- Noninvasive diagnostic and therapeutic strategies
- Close collaboration between intensivists and hematologists

What to Consider

- New ICU admission policies (prophylactic ICU admission, palliative noninvasive ventilation)
- Start induction chemotherapy in the ICU in high risk patients
- · Medical emergency teams
- · Minimally invasive (CT-driven), diagnostic procedures

What to encourage

- Early ICU admission
- Improve our understanding of pathophysiology and of toxicities of newly released drugs
- Cytoreduction therapy in hyperleukocytic AML.
- Combination therapy (aminoglycosides) in septic shock
- · Catheter withdrawal in septic shock from unknown origin
- ICU trial
- · Rehabilitation programs
- · Respect patient's preferences and provide early in-ICU palliative care

What not to do

- · Delayed ICU admission
- · Alcalinization in tumor lysis syndrome
- Inappropriate use of nephrotoxic agents (contrast agents, antibiotics, etc...)
- Prolonged noninvasive ventilation in hypoxemic patients meeting criteria for ARDS
- Bronchoscopy and bronchoalveolar lavage in deeply hypoxemic patients for whom a noninvasive diagnostic test is available
- Premature end-of-life decisions

What to evaluate

- Noninvasive ventilation, blood transfusion policies,
- Effectiveness of new diagnostic tests
- Impact of cytogenetics and molecular biology on organ dysfunction (e.g., in AML or lymphoma...)
- · Triage criteria by hematologists for ICU referral
- Current risk factors for adverse events (invasive fungal infections, mortality)
- · Long term outcomes (survival, disease control, quality of life, post-ICU burden)
- Decision-making for patients with prolonged ICU stays

Variation in morality

Volume of cases

Presence of haematologist

Cytogenetics and organ dysfunction

Criteria used by haematologist for ICU referral

New admission policies

 Early admission may increase survival or prevent progression of organ failures

• When is 'early' early enough?

Prophylactic admission for high risk patients?

Review admission policies e.g.allografts?

Non invasive ventilation

• What is the benefit?

Does it delay treatment?

• NIV versus HFN?

Palliative NIV?

Trial of organ support

• How long for?

Risks disproportionate care

Applying findings from studies to individual patients

Longer term outcomes

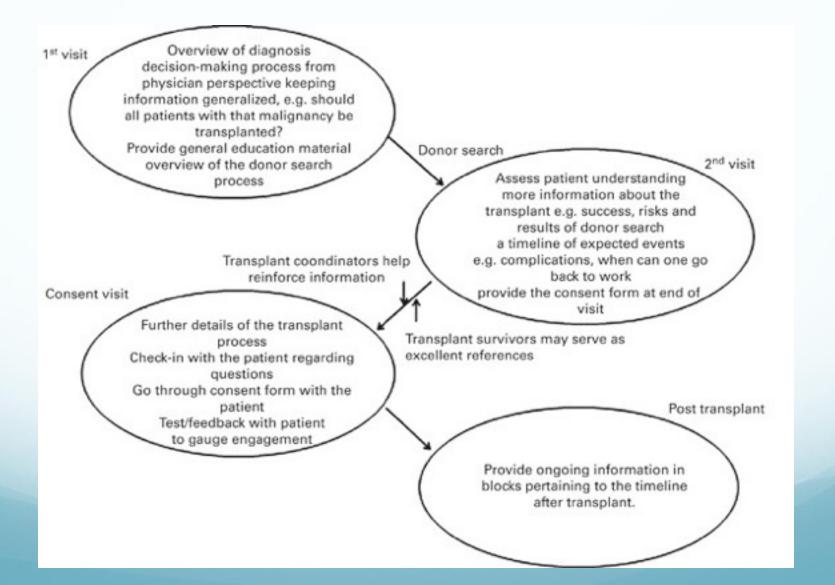
Risk factors for adverse events in ICU

Disease burden and control

QUALY

Decision making for patients with long stay

Frailty

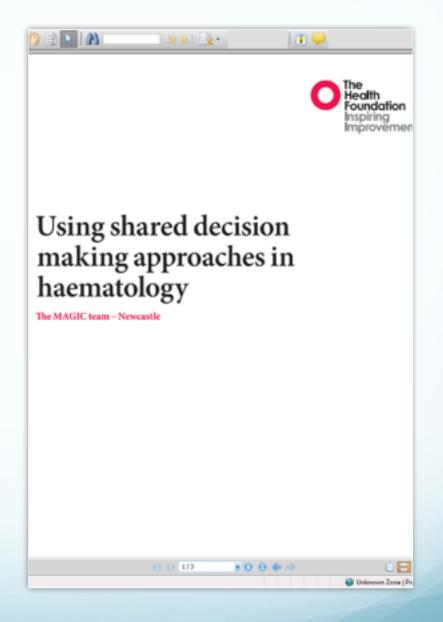

Common across all ages

 Association with high disease burden, early non-relapse morbidity, late death post transplant

• Frailty phenotype?

Assessment? Prehabilitation? Follow-up?

Consent


Freeman

Transplant MDT

Collaborative approach

Early ICU input

Communication

Conclusions

- ICU and one year mortality rates are improving
- Short term outcome is predicted by severity of acute illness
- ICU trial with reappraisal of organ failure scores after 5 days
- Collaboration and clear communication is crucial
- Further research is needed

Thank you